Non-driving Related Tasks in Automated Driving – Implications for Driver's Take-over Performance and HMI Design

Bernhard Wandtner, Opel Automobile GmbH
Oliver Jarosch, BMW Group
In Conditional Automated Driving (CAD, SAE Type 3) the system performs longitudinal and lateral vehicle control.

- The human driver can engage in non-driving related tasks (NDRTs) as she/he is not required to monitor the system/environment.

- However, if the system detects a situation it can not handle, the human driver receives a Request to Intervene (Rti).

 Example video of short-term take-over situation:

 „Please take over vehicle control!“
Driver Availability Model

- An adequate driver state is the prerequisite for a successful take-over reaction of the driver:

Different NDRTs can affect different aspects of the driver state and thus take-over performance when it comes to an RtI.
Aspects of the driver state

- **Sensory**: what can currently be perceived with the sensory system; what information is required in a take-over situation?
- **Motoric**: position in the vehicle (turned around, lying, sitting) or the availability of the hands for steering (occupied or not?)
- **Cognitive**: reconfiguration of mental task sets or response rules
- **Arousal**: emergence of passive task related fatigue in automated driving
- **Motivation**: reduced willingness to instantly interrupt the NDRT

➢ In Ko-HAF these aspects were examined in several studies by different project-partners.
Effects of NDRTs: Sensory and motoric transition (1)

Method
- Wizard-of-Oz-Approach
- \(N = 34 \) participants
- RtI due to sensor failure on open road
- 5 vs. 15 minutes automation period

Main results: Take-over reaction

Non-driving related tasks (NDRTs)
- Baseline (no task)
- Listen to Audiobook
- Playing Tetris (mounted Tablet)
- Reading magazine (handheld)
- Search task (requires rotation of torso)

Conclusion
- Increased take-over times due to motoric unavailability
- Large inter-individual differences
Effects of NDRTs: Sensory and motoric transition (2)

Method: Driving simulator study ($N = 30$)

<table>
<thead>
<tr>
<th>NDRT</th>
<th>Resource demands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversation</td>
<td>Auditory-vocal (AV)</td>
</tr>
<tr>
<td>Reading out text</td>
<td>Visual-vocal (VV)</td>
</tr>
<tr>
<td>Texting (Tablet mounted)</td>
<td>Visual-manual (VM)</td>
</tr>
<tr>
<td>Texting (Tablet handheld)</td>
<td>Visual-manual (VMh)</td>
</tr>
</tbody>
</table>

Results: Take-over reaction

Take-over scenario: Obstacle with TTC = 6 sec.

Conclusion

- Significant effects of modalities.
- The handheld texting task degraded performance the most.
Effects of NDRTs: Cognitive transition

Method: Driving simulator study (N=53, age = 32 years, SD=16y)
Between subject factor: NDRTs

<table>
<thead>
<tr>
<th>Visual-motoric</th>
<th>Cognitive</th>
<th>Motoric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surrogate Reference Task</td>
<td>N-back Task (N = 2)</td>
<td>Shape-sorter ball</td>
</tr>
</tbody>
</table>

Within subject factors: take-over situation and instruction (free vs. instructed)

<table>
<thead>
<tr>
<th>Crash site</th>
<th>Construction site</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

Example Results: Take-over Time

<table>
<thead>
<tr>
<th>Time [s]</th>
<th>SuRT</th>
<th>N-back</th>
<th>Motoric task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.66</td>
<td>2.71</td>
<td>2.88</td>
</tr>
</tbody>
</table>

Conclusion:
- NDRTs (different modalities) influence the driver state and can be detected using eye-tracking and seat pressure mats
- However, no significant differences were found regarding drivers’ take-over performance.
Effects of NDRTs: Arousal Level

Method:
- Motion Based Driving simulator study (N = 66)
- Between-subjects factor: NDRTs to affect fatigue
- Prolonged automated ride: 60 min
- A take-over situation with ttc = 7 s occurred after 50 min

Results: driver state (PERCLOS)

Results: Take-over time

- Significant effect on the driver state (subjective / objective fatigue).
- Significant differences in take-over reaction (reaction times).
Effects of NDRTs: Motivational Aspects (1)

Method: Driving simulator study (N=53)
NDRT: Playing Tetris® on tablet

Manipulation 1: Interruption Effort
→ Throwing tablet on co-driver’s seat vs. storing it in a box

Manipulation 2: Task Incentive
→ Playing as a simple pastime vs. playing for points and money

Results: First driver reaction*
*steering wheel button press, braking or steering wheel angle > 2°

Conclusion:
- High interruption effort (storing tablet in box) causes delayed driver reaction times (approx. 1.5 s latency)
- Motivational differences in the study were small and task incentive did not lead to significant differences in reaction times

Take-over scenario:
Obstacle with TTC = 9 sec.
Effects of NDRTs: Motivational Aspects (2)

Method
- Study in Daimler Driving Simulator
- \(N\text{(total)} = 96, \ N\text{(with all situations)} = 44\) participants
- NDR-tasks: Reading, Video, Item search
- **Mandatory vs. self-regulated** engagement
 - Mandatory = High Workload
 - Self-regulated = Free Workload

Take-over Situation with RtI (Request to Intervene)
- Missing lane markings & crosswind

Main results

- The differences in drivers' reaction times to RtI for different levels of workload are statistically significant, but practically irrelevant.
- The reaction times to RtI during self initiated NDRT are faster than during instructed NDRT.
Effects of NDRTs: Summary of Publications

Overall effects of different NDRTs. Not only Ko-HAF experiments are represented.

For a detailed description see:
Conclusion: NDRTs

The Ko-HAF experiments showed increased take-over times for NDRTs including:

- Strong rotations of the torso (> 90°)
- Manual interaction with handheld objects (e.g. tablet computer)
- High effort or steps needed to disengage from an NDRT

No clear / consistent results were found for:

- Visual or visual-manual tasks without occupation of hands
- NDRTs affecting the cognitive transition

Overall: Strong individual differences

- Natural behavior, self regulation and motivational aspects of NDRTs should be considered in the experimental design.
HMI Implications: How to support the driver?

Different types of take-over situations considered in Ko-HAF:

- Long-term transitions (based on Safety Server)
 - Known from maps / card material / online updates
 - Safety Server (Ko-HAF)
 - The human driver can be requested long time before he has to regain control

- Short-term transitions (based on Onboard Sensors)
 - Detected by onboard sensors
 - Short period of time – the human driver has to regain control within seconds
Example Concept for Long-term transitions (1)

Method: Driving simulator study ($N = 36$)

Tested HMI versions (selection)
- Basic HMI
- Adaptive HMI (staged pre-alerts)

What is the impact on NDRT disengagement and take-over times in predictable transitions?

Results: NDRT disengagement

- Pre-alerts facilitated NDRT disengagement and take-over time.
- Very good user experience and acceptance ratings for adaptive HMI.
Example Concept for Long-term transitions (2)

HMI for take-over requests

- "Upcoming work zone – please take over soon"
- "Please take over"
- "Take over!"

HMI for system maneuvers (no driver intervention required)

- "Upcoming lane splitting"
- "Preparing lane change..."
- "Changing lane..."

Results: Usability

- Take-over requests followed a multi-step escalation scheme
- Take-over requests and system maneuvers displayed different HMIs
- Additional speech output increased overall system usability

N=17
Example Concept for Short-term transitions

Method: Driving simulator study (N = 64) 3x2 between-within design

- Three different HMI concepts for RtI
 - Speech output
 - LED – light signal
 - Baseline: Text

- Take-over scenarios

 Scenario 1:
 required reaction of driver: Lane change maneuver

 Scenario 2:
 required reaction of driver: Braking maneuver

Results: Take-over reaction

Gaze-reaction time (in s)

<table>
<thead>
<tr>
<th>1. Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech</td>
</tr>
<tr>
<td>LED</td>
</tr>
<tr>
<td>Text</td>
</tr>
</tbody>
</table>

Hands-on times (in s)

<table>
<thead>
<tr>
<th>1. Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech</td>
</tr>
<tr>
<td>LED</td>
</tr>
<tr>
<td>Text</td>
</tr>
</tbody>
</table>

- Eyes-on road time was lowest in the LED group.
- In the LED group reaction times were faster compared to the other HMI concepts (hands-on time, braking reaction).
Conclusion: HMI

Long-term transitions

- **Multi-stage transition concepts** have been shown to accelerate the disengagement from NDRTs and take-over time.

- A preview of planned requests to intervene along the route (based on safety server information) helps **drivers to self-regulate their engagement** in NDRTs.

Short-term transitions

- The **request to intervene (RtI)** should be designed to be **multi-modal** and needs to explicitly convey the necessity for taking over control of the vehicle.

- An „**NDRT lockout“** simultaneously with the request to intervene (RtI) can accelerate the driver response.
Thank you
for your attention!

The contents of this presentation (including but not limited to texts, images, photos, logos, etc.) and the presentation itself are protected by intellectual property rights. They were created by the project consortium Ko-HAF and/or licenced by the project consortium. Any disclosure, modification, publication, translation, multiplication of the presentation and/or its contents is only permitted with a prior written authorisation by the consortium.

© Copyright Project Ko-HAF, 2018, Kontakt: projektbuero@ko-haf.de
References

