Are you Ready to Take-over? – Driver State During Automated Driving

Jonas Radlmayr, TU Munich – Chair of Ergonomics
Dennis Befelein, University of Würzburg – Center for Traffic Sciences (IZVW)
Claus Marberger, Robert Bosch GmbH
Svenja Paradies, BMW Group
Content

- Transition Process and Model
- Test Scenarios
- Requirements for a generic HMI
- Catalogue of non-driving related tasks (NDRTs)
- Metrics and TOC-Rating
- Wizard of Oz method
In Work Package 3, we conducted a total of **33 empirical studies**, with **1723 participants**, in over **1750 hours**, resulting in **30 publications**.

Common methodology to allow comparison of experiments and results.

- Transition model for take-overs
- Definition of take-over situations
- Generic HMI requirements
- Catalogue of NDRTs
Transition Process and Model

Transition Process and Model

Transition Process and Model

Automated driving → Manual driving

Current driver state
- Sensory state
- Motoric state
- Cognitive state

Driver state transition process

Target driver state
- Sensory state
- Motoric state
- Cognitive state

Driver intervention process

Type of current (non driving related) activity

Type/Design of Request to Intervene

Requirements of take-over scenario

Driver training / education / system experience
Definition of take-over situations

<table>
<thead>
<tr>
<th></th>
<th>Urgency of situation</th>
<th>Predictability of RtI</th>
<th>Criticality of situation</th>
<th>Complexity of driver response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human performance limits</td>
<td>How much time is available to intervene?</td>
<td>How likely is the driver prepared about a future take-over requirement?</td>
<td>How severe are the consequences if the driver does not take-over in time?</td>
<td>How complex is the required driver intervention?</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>medium-high</td>
</tr>
<tr>
<td>Time demand for unplanned transitions</td>
<td>medium</td>
<td>low</td>
<td>low</td>
<td>low-high</td>
</tr>
<tr>
<td>Driver comfort for planned transitions</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Definition of take-over situations

Identification of six possible and reasonable take-over situations for the workpackage 3 experiments.
Transition Process and Model

Automated driving

Current driver state
- Sensory state
- Motoric state
- Cognitive state
- Arousal level
- Motivational conditions

Driver state transition process

Target driver state
- Sensory state
- Motoric state
- Cognitive state

Driver intervention process

Manual driving

Type of current (non driving related) activity

Type/Design of Request to Intervene

Requirements of take-over scenario

Driver training / education / system experience

September 19th & 20th, 2018
Ko-HAF – Are you Ready to Take-over? Driver State During Automated Driving

Ko-HAF – Are you Ready to Take-over? Driver State During Automated Driving
HMI – Minimal requirements

- Messages concerning the status of the automation
 - System not available and not activated (Off)
 - System available but not activated (Ready)
 - System available and active (On)
 - System soon not available but active (Request to Intervene, RtI)

- Modalities of the status of automation
 - Continous system status: visual
 - Request to Intervene/Warnings: at least dual modalities (e.g. acoustic + visual, visual + haptic)
Transition Process and Model

Automated driving → Manual driving

Current driver state
- Sensory state
- Motoric state
- Cognitive state

Motivational conditions

Driver state transition process

Target driver state
- Sensory state
- Motoric state
- Cognitive state

Driver intervention process

Type of current (non driving related) activity

Type/Design of Request to Intervene

Requirements of take-over scenario

Driver training / education / system experience
Task switching

Requirements for driver
1. General availability (e.g. being awake)
2. Perception of task switching necessity and allocating driver availability for take-over process
3. NDRT-disengagement planning and executing
Catalogue of NDRTs

Depending on step of the task switching process

→ What is affected by the NDRT?
→ List of **16 features** (e.g. over-/underload, modalities, involvement, effort of disengagement)
Catalogue of NDRTs

<table>
<thead>
<tr>
<th>HAF-Stage</th>
<th>Natural Environment</th>
<th>HAF Engagement</th>
<th>Driver State</th>
<th>Literature Link to NDRT</th>
<th>TAF</th>
<th>HAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaged</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Degraded</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Degradation</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Manual</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Measures for human performance (see ISO TR21959 Part 1)

▪ Type of driver intervention, e.g.
 ▪ Deactivation by steer/brake,..

▪ Time related measures, e.g.
 ▪ Take-over time
 ▪ Remaining action time

▪ Quality related measures, e.g.
 ▪ Single (objective) performance measures
 ▪ Collision (speed)
 ▪ Minimum time to collision
 ▪ SDLP
 ▪ Driver subjective assessment
 ▪ Expert assessment of traffic safety
Take-over controllability rating (TOC)

Controllability: Different, potentially safety-relevant aspects when drivers need to react to system limits or failures.

The TOC-Rating is a scientifically based expert method for assessing the controllability of take-over situations in conditionally automated driving (level 3).
Take-over controllability rating (TOC)

Assessment criteria

- **Uncontrollable events** (e.g. leaving the road)
- **Endangerments** (e.g. near-accidents with other road users)
- **Driving errors** (e.g. failure to secure): Poor quality of take-over
- **Imprecision in vehicle guidance** (e.g. imprecise lane keeping): Good quality of take-over with minor impairments.
Take-over controllability rating (TOC)

- Integration of multiple (single) performance measures into one global metric.
- Raters are trained to ensure high inter-rater reliability.

The TOC adds a holistic, flexible, efficient and comparable method for assessing the controllability of take-overs.
Wizard-of-Oz (exemplary BASt)

- Second seat in the back, used to simulate automated driving by a human (wizard)
- Concealed and unrecognizable for participants
- Can be used on public roads
- Specific HMI concept to allow transitions between manual driving and automated driving
- Data acquisition of driving data, eye-tracking, physiological data, reaction times
- Other Wizard-of-Oz-Approaches at Audi, BMW and Bosch
Are you Ready to Take-over?

- Methodological common ground as basis for the empirical experiments.

- Results, nomenclature and understanding were integrated into the ISO discussion and standardization.
Thank you for your attention!

The contents of this presentation (including but not limited to texts, images, photos, logos, etc.) and the presentation itself are protected by intellectual property rights. They were created by the project consortium Ko-HAF and/or licenced by the project consortium. Any disclosure, modification, publication, translation, multiplication of the presentation and/or its contents is only permitted with a prior written authorisation by the consortium.

© Copyright Project Ko-HAF, 2018, Contact: projektbuero@ko-haf.de