Focusing on the driver: A Human Factors Approach to Automated Driving

Prof. Dr. phil. Klaus Bengler, Jonas Radlmayr
TU Munich, Chair of Ergonomics
Content

- Goals and objectives
 - Finding a common understanding
 - Automation effects
 - Optimizing the HMI
 - Recommendations
- Focusing on the driver? – Conclusion
Human factors of automated driving – A paradigm shift

- What is the driver’s role?
- How does the driver state change and affect human performance?
- Integration and Validation of non-driving related tasks activities
- Concept and design of transitions
Central questions

- For how long may the driver attend to non driving related activities?
- How long does it take until the driver can take over the driving task in case of a sudden disturbance?
- How long can the driver be attentive?
- The heterogeneity of the transitions is increasing – Does the system remain operable?

Ironies of automation

“Automated systems still are man-machine systems, for which both technical and human factors are important.”
(Bainbridge, 1983)

“... the irony that the more advanced a control system is, so the more crucial may be the contribution of the human operator.”
Objectives

- Specifications of the test scenarios and aspects of the man-machine interaction
- Modelling the driver availability and vigilance
- Investigation of automation effects
- Transition concepts optimised for HAD
- Recommendations for methods and interaction concepts
Scope

- 33 empirical studies
- Total of 1723 participants
- More than 1750 hours of experiments
- More than 30 publications
Specifications of the test scenarios and aspects of the human-machine interaction

Transition model for take-overs

Definition of take-over situations

Generic HMI requirements

Catalogue of NDRTs

Common methodology to allow comparison of experiments and results.
Transition Process and Model

Transition Process and Model

Automated driving →

Current driver state
- Sensory state
- Motoric state
- Cognitive state

Arousal level

Motivational conditions

Driver state transition process

Target driver state
- Sensory state
- Motoric state
- Cognitive state

Manual driving →

Driver intervention process

Type of current (non driving related) activity

Type/Design of Request to Intervene

Requirements of take-over scenario

Driver training / education / system experience

Definition of take-over situations

Identification of **six** possible and reasonable take-over situations for the workpackage 3 experiments.
HMI – Minimal requirements

- Messages concerning the status of the automation
 - System not available and not activated (Off)
 - System available but not activated (Ready)
 - System available and active (On)
 - System soon not available but active (Request to Intervene, RtI)

- Modalities of the status of automation
 - Continous system status: visual
 - Request to Intervene/Warnings: at least dual modalities (e.g. acoustic + visual, visual + haptic)
Catalogue of NDRTs

Depending on step of the task switching process

→ What is affected by the NDRT?

→ List of 16 features (e.g. over-/underload, modalities, involvement, effort of disengagement)
Conclusion – Methodology

- The developed systematics and metrics were evaluated on the basis of prototype conditionally automated driving systems and generic user-interface-designs.
- The project partners analyzed relevant parameters of the driver state (sensoric state, motoric state, cognitive state, arousal and motivation) and their impact on take-over performance.
- In order to evaluate the influence of these parameters on take-over performance, we focused on average driver reactions. However, if the controllability of take-overs is to be assessed, a wider range of human performance needs to be considered as well.
Investigation of automation effects
Drowsiness and fatigue – Questions

How can these driver states be induced and assessed (in real traffic)?

Does drowsiness/sleepiness or fatigue influence take-over performance?
Assessment of drowsiness and fatigue

<table>
<thead>
<tr>
<th>Duration of the automated driving period</th>
<th>Subjective Assessment</th>
<th>Objective Metrics</th>
<th>Expert Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed time vs. State dependent</td>
<td>Karolinska-Sleepiness Scale (KSS)</td>
<td>Heartrate, Galvanic Skin Response, PERCLOS, EEG, COP in the seat</td>
<td>Based on Wierwille</td>
</tr>
</tbody>
</table>

Methodical challenges: How were these driver states assessed?
Conclusion – Drowsiness and fatigue

- It was possible to induce drowsiness and fatigue in test situation (without sleep deprivation). **Driver state changes could be detected** by using several metrics and methods (under experimental conditions).
- While driving with conditional automation, **extreme levels** of drowsiness and fatigue (drivers close to falling asleep) **must be avoided**. Clear and consistent effects on take-over behavior could not be found.
- Based on the detection of high levels of drowsiness and fatigue, **countermeasures (e.g. a specific offer of NDRTs)** can be initiated to avoid or to postpone such extreme driver states.
Overall effects of different NDRTs. Not only Ko-HAF experiments are represented.

For a detailed description see:

Conclusion – NDRTs

The Ko-HAF experiments showed increased take-over times for NDRTs including:

▪ Strong rotations of the torso (> 90°)
▪ Manual interaction with **handheld objects** (e.g. tablet computer)
▪ High effort or steps needed to disengage from an NDRT

No clear / consistent results were found for:

▪ Visual or visual-manual tasks without occupation of hands
▪ NDRTs affecting the **cognitive transition**

Overall: **Strong individual differences**

➢ Natural behavior, **self regulation** and motivational aspects of NDRTs should be considered in the experimental design.
HMI Implications:
How to support the driver?

Different **types of take-over situations** considered in Ko-HAF:

- **Long-term transitions** (based on Safety-Server)
 - Known from maps / card material / online updates
 - Safety-Server (Ko-HAF)
 - The human driver can be requested long time before he has to regain control

- **Short-term transitions** (based on Onboard Sensors)
 - Detected by onboard sensors
 - Short period of time – the human driver has to regain control within seconds
Conclusion – HMI

Long-term transitions

- **Multi-stage transition concepts** have been shown to accelerate the disengagement from NDRTs and take-over time.
- A preview of planned requests to intervene along the route (based on safety server information) helps *drivers to self-regulate their engagement* in NDRTs.

Short-term transitions

- The *request to intervene (RtI)* should be designed to be *multi-modal* and needs to explicitly convey the necessity for taking over vehicle control.
- An „NDRT lockout“ simultaneously with the request to intervene (RtI) can accelerate the driver response.
Wizard-of-Oz (exemplary BASt)

- Second seat in the back, used to simulate automated driving by a human (wizard)
- Concealed and unrecognizable for participants
- Can be used on public roads
- Specific HMI concept to allow transitions between manual driving and automated driving
- Data acquisition of driving data, eye-tracking, physiological data, reaction times
 → Other Wizard-of-Oz-Approaches at Audi, BMW and Bosch
Recommendations for methods and interaction concepts

- **Key messages** on definitions and results from experiments.

- **See the rollups** for more details!
Conclusion

In our experiments, the take-over time is influenced by

- Attributes of the take-over scenario (e.g. time budget, complexity of the required driver intervention)
- Individual driver characteristics
- Attributes of non-driving related tasks (NDRTs)
- The design of the human-machine interface

By adopting the so-called Wizard-of-Oz approach, we further developed a method for conducting automated driving experiments in real traffic.
Results, nomenclature and understanding were integrated into the ISO discussion and standardization.
Thank you for your attention!

The contents of this presentation (including but not limited to texts, images, photos, logos, etc.) and the presentation itself are protected by intellectual property rights. They were created by the project consortium Ko-HAF and/or licenced by the project consortium. Any disclosure, modification, publication, translation, multiplication of the presentation and/or its contents is only permitted with a prior written authorisation by the consortium.

© Copyright Project Ko-HAF, 2018, Contact: projektbuero@ko-haf.de