Highly Automated Driving – Validation and Test

Johannes Vetter,
Continental Safety Engineering International GmbH
Table of Contents

- Methods
- Testspecification
- Testtools
 - Vehicle test (real world / proving ground)
 - “TestAssist“ Conti Safety
 - “TestManager“ IfF TUBS
 - Simulation
 - Simulation as a Tool Conti Teves
 - Sensor Validation BMW
 - Cooperative Simulation Opel
- Assessment (real world data)
Overall Methodology

- **Scenario Development**
 - HAD-SYSTEM
 - USE-CASES
 - BASE-SCENARIOS
 - GENERIC PARAMETERS

- **Test-Case Identification**
 - INFORMATION BASE
 - SPECIFIC PARAMETERS
 - MANEUVERS
 - TEST-CASES

- **Test Procedure**
 - TEST SPECIFICATION
 - TEST DISTRIBUTION, EXECUTION
 - ASSESSMENT AND EVALUATION
Scenario Development

HAD Systems

Use-Cases

Base-Scenarios

Test-Cases

examples:

Automated approach and merging

Test-Case 1-n

Driveway

Scenario-Catalog
Test-Case Identification

INFORMATION BASE

- **Stat. and Dyn. Parameters, Maneuvers**

ANALYSIS

RATING

- **Distributions, relevant characteristics**

TEST-CASES

Graph:
- **length of acceleration lanes**
- **frequency (Σ133)**

- Length in m:
 - 0
 - 100
 - 200
 - 300
 - 400
 - 500
 - 600
 - 700
 - 800
 - 900
 - 10...

- Frequency:
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25

Test-Case Catalog

September 19th & 20th, 2018

Ko-HAF – Highly Automated Driving – Validation and Test
Test Procedure

Test-Cases

Assignment

Simulation-Framework

Proving Ground

Public Road, Test Field

Assessment

[1] Variation

[2] Reference
Testspezifikation

Example from Test Catalog
Concept “TestAssist“ Software

- lane change to the right
- shortly deceleration to 85 kph
- 5 kph too slow
- planned position
- real position
- position 11m backwards
- Target

HMI „driver navi“

Slave 1

Master
Concept "TestAssist" Software

Target Master position 11m backwards shortly deceleration to 85 kph 5 kph too slow

Slave 1 planned position real position
Concept “TestAssist“ Hardware

WLAN - Router

“TestAssist” HMI

localization reference

car computer “TestAssist”
Tool “TestAssist”

- Planning scenarios for each vehicle (Target, Master, Slave 1 and 2)
- A high accurate map is used (OpenDrive)
- Simulation of planned scenarios with moving vehicles – useful for:
 - Briefing test drivers
 - Optimizing the test case
- Definition of the test case is saved in a “json” file
- Positioning & moving data from a test run are saved in a “Logging” file (10 to 20ms step)
- Replaying of test runs and comparison real vs. planned test cases
 ➔ Related to absolute positions based on topographical surroundings
Concept “Testmanager“ IfF TUBS

- Object1
 - v_{object1} [km/h]
 - x_{object1} [m]
 - i.a. observed parameters
- Object2
 - v_{object2} [km/h]
 - x_{object2} [m]
- Δx [m]
- VuT$^{[1]}$ / Master
- LIDAR coverage
Tool “Testmanager“ IfF TUBS

- Tool-Chain for the observance of test parameters and precise test execution in reality
- Planning and Definition of complex highway scenarios
- Test Instructions for a high precise execution
- Evaluation of run test-cases [Quality-Index]
- Visualization via mobile device or Car-PC
- No additional hardware needed in object vehicles
- Based on LIDAR-Sensors and WLAN Communication

→ Related to relative positions of object vehicles
Simulation as a Tool

- The simulation environment consists of models that generate signals for input over time or receive them as output of the system under Test (SuT)
- Open loop vs. closed loop:
 - Closed loop considers feedback of the SuT
- Virtualization of the outer environment is utilized to test the SuT
Simulation as a Tool

- Continuous testing describes a method which aims to give early feedback about software development from source code level to product level.
- Automated execution of:
 - Software build
 - Tests
 - Analysis
 - Reporting to stakeholders
Simulation as a Tool

Continuous testing workflow

GitHub

Jenkins

Gate 1:
Compile

Gate 1: Static and Unit tests

Gate 1 successful?

Yes

No

New Code?

Jenkins

Observes for changes

Developer

Simulation Report

Gate 2:
Gate 2:
Integration ("smoke") test

Gate 2 successful?

No

Yes

Gate 3:
Gate 3:
System test

Gate 3 successful?

Yes

Regression test

No

Yes

Effort

September 19th & 20th, 2018
Ko-HAF – Highly Automated Driving – Validation and Test
Simulation as a Tool

- By this approach early feedback could be given to developers
- Failures could be localized easier
- Real vehicle testing is done only with high mature software

- Check for functional failures at vehicle level
- Check for interface failures after integration of all software modules
- Check for failures at software module level
- Perform a complex regression test only with release candidates
Simulation: Sensor Modelling

- High-Level Sensor Models
 - Object Lists
 - Statistical Approach

- Low-Level Sensor Models
 - Sensor specific i.e. Point Cloud
 - Ray Tracing Approach
Simulation: Validation of Sensor Models

▪ Visit our Simulation Demo on the Main Floor
Simulation: Co-Simulation

Traffic

Vehicle Dynamics
Simulation: Prototype-in-the-Loop

Real-World Vehicle-under-Test

Virtual Traffic Participants
Assessment of Real World Data

1. Requirements Analysis
2. Definition of Evaluation Subjects
3. Modelling of Evaluation Criteria
4. Deduction of Parameters
5. Testing / Datalogging
6. Evaluation / Recommended Actions
Assessment of Real World Data

Which requirements are placed on the HAF?

- Requirements linked to Ko-HAF project goals
- HAF has to be...
 - ...safe
 - ...efficient
 - ...comfortable,
while performing functions at speed up to 130 km/h on highways.
Assessment of Real World Data

How to ensure that the HAF meets the requirements?

- Based on the Use-Cases and Base-Scenarios, a Scenario-Catalog had to be defined
- This led to a Test-Catalog with Test-Cases containing
 - Specific parameters
 - Maneuvers
 - Distributions
 - and relevant characteristics
- The Test-Cases were assigned to different test environments
 - Simulation
 - Proving ground
 - Public road
- Matching these Test-Cases and the Requirements, a variety of Evaluation Subjects were defined
Assessment of Real World Data

Which criteria to use for a HAF?

- A jointly agreed Logging was developed with all Partners involved
- Using a standardized “json” architecture
- Contents of the file are based on the Evaluation Subjects
- Since all Partners developing own HAF-Vehicles, focus on quality and quantity criteria
 - Technical maturity of the HAF
 - Reliability of the functions
 - No benchmark
Assessment of Real World Data

How to rate the HAF?

- The Ko-HAF Logfile contains a variety of parameters such as...
 - Local ID
 - Lane ID
 - Event time
 - GPS position (long; lat)
 - Event Message
 - Ego speed
 - Vehicle position around the Ego
 - etc...

Deduction of Parameters

Example from the Logfile

<table>
<thead>
<tr>
<th>Werte - Eventeintrag</th>
<th>JSON Datei - Kurzname</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>EventName</td>
<td>Text</td>
</tr>
<tr>
<td>Zeistempel</td>
<td>EreignisZeit</td>
<td>YYYY-MM-DD-HH:MM:SS.mmm</td>
</tr>
<tr>
<td>Relativer km-Stand</td>
<td>RelativerKmStand</td>
<td>Meter</td>
</tr>
<tr>
<td>Spur-ID</td>
<td>SpurId</td>
<td>In Ko-HAF keine absolute, sondern relative Nummerierung der Spuren. Details in Dokument Ko-HAF_Spezifikation_Kommunikationsschnittstellen.docx: https://service.projectplace.com/pp/pp.cgi/r1232389708 Seite 19 (siehe oberer Abschnitt)</td>
</tr>
<tr>
<td>Position</td>
<td>GpsPositionLat</td>
<td>ms arc</td>
</tr>
<tr>
<td></td>
<td>GpsPositionLong</td>
<td>ms arc</td>
</tr>
<tr>
<td>Message</td>
<td>EventMessage</td>
<td>Freitext</td>
</tr>
</tbody>
</table>
Assessment of Real World Data

Which test environment fits best to HAF?

- After the assignment of the Test-Cases, testing took place in simulation, on proving ground and on public road

 - With conclusion of the testing, each partner is providing their logfiles for evaluation

 - The logging data of each test environment is concentrated at the Ko-HAF Safety Server

Ko-HAF Test area on public road
Assessment of Real World Data

Has the HAF met the requirements?

- After completing the development and testing in Ko-HAF, the Evaluation will take place following the final presentation
- As determined by the assessment process, the evaluation is performed on the basis of the jointly agreed logging data

→ The aim of the Evaluation is to prove whether the HAF was able to fulfill all requirements and to recommend actions for further developments
Thank you for your attention!

The contents of this presentation (including but not limited to texts, images, photos, logos, etc.) and the presentation itself are protected by intellectual property rights. They were created by the project consortium Ko-HAF and/or licenced by the project consortium. Any disclosure, modification, publication, translation, multiplication of the presentation and/or its contents is only permitted with a prior written authorisation by the consortium.

© Copyright Project Ko-HAF, 2018, Contact: projektbuero@ko-haf.de