Development of Automated Driving Functions

Dr. Stefan Berger, Opel Automobile GmbH
Outline

- Highly automated driving (SAE Level 3)
- Development of driving functions
- Scenarios and demo rides on test track
Levels of Automated Driving

<table>
<thead>
<tr>
<th>Driver</th>
<th>Vehicle</th>
<th>SAE Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent longitudinal AND lateral guide</td>
<td>No interfering vehicle system</td>
<td>SAE Level 0</td>
</tr>
<tr>
<td>Permanent longitudinal OR lateral guide</td>
<td>System takes over the other function</td>
<td>SAE Level 1</td>
</tr>
<tr>
<td>Permanent monitoring</td>
<td>Longitudinal and lateral guide in special application</td>
<td>SAE Level 2</td>
</tr>
<tr>
<td>No permanent monitoring / driver prepared to take over</td>
<td>Longitudinal and lateral guide in specific application / Detects system limits → Take-over command with safety time</td>
<td>SAE Level 3</td>
</tr>
<tr>
<td>No driver necessary in specific application</td>
<td>System can manage any situation automatically in specific application</td>
<td>SAE Level 4</td>
</tr>
<tr>
<td>No driver necessary</td>
<td>The system can manage any situation automatically</td>
<td>SAE Level 5</td>
</tr>
</tbody>
</table>

- **SAE Level 0**: No interfering vehicle system. Only the driver.
- **SAE Level 1**: Permanent longitudinal OR lateral guide. Assisted.
- **SAE Level 2**: Permanent monitoring. Partly automated.
- **SAE Level 3**: No permanent monitoring / driver prepared to take over. Highly automated.
- **SAE Level 4**: No driver necessary in specific application. Fully automated.
- **SAE Level 5**: No driver necessary. Driver-less.

Source: Verband der Automobilindustrie e. V. (VDA)
SAE Level 3 – Highly Automated Driving

- Driver is prepared for take-over when systems limits occur

- Main objectives of Ko-HAF demonstrator vehicles:
 - Automated *longitudinal and lateral control* while driving
 - Watch out for *system limits*
 - Tell driver to *take over control* before system limit is reached *(HMI, WP3)*
Highly Automated Driving on Highways

- Objective: Drive on highway from A to B with preferred set speed and without collision
- Problem: "Obstacles" on the road: speed limits, slower vehicles, traffic jams, road works, break-down vehicles, ...
- Automated Driving Functions can be divided into 3 tasks: Sense – Plan – Act
Sense – Plan – Act

- Sensors: camera, radar, lidar, ...

Ko-HAF Partner 1:

Ko-HAF Partner 2:

- Sensors: camera, radar, lidar, …
Sense – Plan – Act

- Environmental detection:
 Lane markings, objects (static + dynamic), landmarks
- Lane markings \rightarrow **lateral localization (WP2)**
- Landmarks (= e.g. traffic signs, bridges) \rightarrow **longitudinal localization**
- Static objects \rightarrow **road hazards** (exchange information via Safety Server, **WP1**)
- Dynamic objects (= other traffic participants) \rightarrow **driving strategy**
- Gaps in neighboring lanes \rightarrow maneuver planning
- **Not only sense** current environment **but also predict** future motion of dynamic objects
 \rightarrow Tomorrow: Presentation on motion prediction, 12:00, **D. Augustin**, Opel
Sense – Plan – Act

- **Determine possible driving maneuvers, e.g.**
 - Lane Change Left, LCL
 - Lane Change Right, LCR
 - Keep Lane, KL

- **Decision making**
 - Cost functions
 - Low cost for legal maneuvers (e.g. changing lane)
 - High cost for illegal maneuvers (crossing solid line)
 - Very high cost for collision-afflicted maneuvers
 - \(\rightarrow \) Choose maneuver with lowest cost
Sense – **Plan** – Act

- **Trajectory Planning**

Trajectory = path + time information

What is the best trajectory for the lane change?
Sense – **Plan** – Act

- **Trajectory Planning**
 - Calculate several trajectories
 - Calculate maximum accelerations (longitudinal and lateral)
 - Check for physical limits
 - Check for collisions with other objects
 - Include motion prediction of other traffic participants
 - Add cost function with penalty for low comfort, too small distances to neighboring vehicles, etc.
 - Choose best trajectory (with lowest cost)

→ **Tomorrow:** Presentation on motion planning, 12:30, B. Reuber, IfF
Sense – Plan – Act

Highway Simulation

Planned Trajectory (next 1.5 s)

Safety distance 0.9 s
Safety distance 1.8 s

Current speed = 60 km/h
Maximum speed = 100 km/h

Car

Ego car
Sense – Plan – **Act**

- **Trajectory Control**
 - Control concepts for engine, steering, brake

- **Safety Concept – What to do when system failures occur?**
 - No driver reaction after take-over request
 - Sensor fault due to heavy rain, snowfall, fog
 - Digital map outdated
 - System limits reached (e.g. roadworks, accident, earthquake)
 - Unexpected motion of other traffic participants

 → Minimal risk maneuvers, fail-safe trajectories

→ Tomorrow: **Presentation** on minimal risk maneuvers, 13:00, **Th. Leonhardt**, Audi
Sense – Plan – Act

Fail-safe trajectories

- Fail-safe trajectories are collision-free with respect to any feasible future behavior of obstacles
- Ensure that the ego vehicle is able to execute a fail-safe trajectory at any time
Sense – Plan – **Act**

- **Fail-safe trajectories**

 - When traffic participants deviate from predicted motion, the ego vehicle has **two options**:
 - Execute previous *fail-safe trajectory*
 - Find a new pair of an intended motion and *fail-safe trajectory*
Scenarios and Demo Rides on Test Track

"Lange Gerade" ("Straight")
Scenario catalogue

Enter highway and merge

Exit highway
Scenario catalogue

Road Hazard (Traffic Jam)

Road Hazard (Break-down vehicle)
Demonstration Activities
Driving Demos

Table of Demos

<table>
<thead>
<tr>
<th>#</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LTE measurements and prediction</td>
</tr>
<tr>
<td>2</td>
<td>Cooperative HAD from Motorway Entry to Exit</td>
</tr>
<tr>
<td>3</td>
<td>Visual Localization & Preaggregation</td>
</tr>
<tr>
<td>4</td>
<td>HAD-Functions in public traffic</td>
</tr>
<tr>
<td>5</td>
<td>Tactical Decision-Making for HAD</td>
</tr>
<tr>
<td>6</td>
<td>Testmanager - A Tool for reproducible Test Execution</td>
</tr>
<tr>
<td>7</td>
<td>Highway Drive and Hazard Detection</td>
</tr>
<tr>
<td>8</td>
<td>Autonomous Reaction to Safety-Critical Situations on Highways</td>
</tr>
<tr>
<td>9</td>
<td>Testtool</td>
</tr>
<tr>
<td>10</td>
<td>HAD-Functions: Merging, Strategic Handling of break down vehicles, MRM</td>
</tr>
<tr>
<td>11</td>
<td>HAD-Functions in public traffic</td>
</tr>
<tr>
<td>12</td>
<td>Wizard-of-Oz Vehicle for Automated Driving Experience</td>
</tr>
</tbody>
</table>
Thank you for your attention!

The contents of this presentation (including but not limited to texts, images, photos, logos, etc.) and the presentation itself are protected by intellectual property rights. They were created by the project consortium Ko-HAF and/or licenced by the project consortium. Any disclosure, modification, publication, translation, multiplication of the presentation and/or its contents is only permitted with a prior written authorisation by the consortium.

© Copyright Project Ko-HAF, 2018, Contact: projektbuero@ko-haf.de